Abstract

AimsBenzene metabolism seems to modulate NF-κB, p38-MAPK (mitogen-activated protein kinase) and signal transducer and activator of transcription 3 (STAT3) signalling pathways via the production of reactive oxygen species. This study aims to evaluate the effects of low-dose, long-term exposure on NF-κB, STAT3, p38-MAPK and stress-activated protein kinase/Jun amino-terminal kinase (SAPK/JNK) signal transduction pathways in peripheral blood mononuclear cells in gasoline station attendants. The influence of consumption of vegetables and fruits on these pathways has also been evaluated. Main methodsA total of 91 men, employed in gasoline stations located in eastern Sicily, were enrolled for this study and compared with a control group of 63 male office workers with no history of exposure to benzene. The exposure was assessed by measuring urinary trans,trans-muconic acid (t,t-MA) concentration. Quantitative analyses were performed for proteins NF-κB p65, phospho-NF-κB p65, phospho-IκB-α, phospho-SAPK/JNK, phospho-p38 MAPK and phospho-STAT3 using an immunoenzymatic assay. Key findingsThe results of this study indicate significantly higher t,t-MA levels in gasoline station attendants. With regard to NF-κB, phospho-IκB-α and phospho-STAT3 proteins, statistically significant differences were observed in workers exposed to benzene. However, no differences were observed in SAPK/JNK and p38-MAPK activation. These changes were positively correlated with t,t-MA levels, but only phospho-NF-κB p65 was associated with the intake of food rich in antioxidant active principles. SignificanceChronic exposure to low-dose benzene can modulate signal transduction pathways activated by oxidative stress and involved in cell proliferation and apoptosis. This could represent a possible mechanism of carcinogenic action of chronic benzene exposure.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call