Abstract

Understanding the biological effects and biochemical mechanisms of low-dose ionizing radiation (LDIR) is important for setting exposure limits for the safe use of nuclear power and medical diagnostic procedures. Although several studies have highlighted the effects of ionizing radiation on metabolism, most studies have focused on uniform genetic mouse populations. Here, we report the metabolic response to LDIR (10 cGy X ray) on a genetically diverse mouse population (142 mice) generated from a cross of radiation-sensitive (BALB/c) and radiation-resistant (SPRET/EiJ) parental strains. GC-TOF profiling of plasma metabolites was used to compare exposed vs. sham animals. From this, 16 metabolites were significantly altered in the LDIR treated vs. sham group. Use of two significantly altered metabolites, thymine and 2-monostearin, was found to effectively segregate the two treatments. Multivariate statistical analysis was used to identify genetic polymorphisms correlated with metabolite abundance (e.g., amino acids, fatty acids, nucleotides and TCA cycle intermediates). Genetic analysis of metabolic phenotypes showed suggestive linkages for fatty acid and amino acid metabolism. However, metabolite abundance was found to be a function of low-dose ionizing radiation exposure, and not of the underlying genetic variation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.