Abstract

Purpose: The aim of this study was to investigate whether low-dose ionizing radiation attenuates mast cell migration by modulating migration-associated signaling pathways and the expression of chemotactic cytokines.Materials and methods: IgE-sensitized RBL-2H3 mast cells were exposed with ionizing radiation at 0.01, 0.05, 0.1, or 0.5 Gy using a 137Cs γ-irradiator and stimulated with 2,4-dinitrophenol-human serum albumin. Cell migration was determined using a transwell assay system, F-actin distribution using Alex Fluor 488-conjugated phalloidin, expression of various signaling proteins by Western blotting, mRNA expression by RT-PCR.Results: Low-dose ionizing radiation significantly suppressed mast cell migration induced by IgE-mediated mast cell activation. Furthermore, low-dose ionizing radiation altered cell morphology, as reflected by changes in F-actin distribution, and inhibited the activation of PI3K, Btk, Rac1, and Cdc42. These effects were mediated by Nr4a2, an immune-modulating factor. Knockdown of Nr4a2 reduced mast cell migration, inhibited the PI3K and Btk signaling pathways, and reduced expression of the chemotactic cytokine monocyte chemoattractant protein-1 (MCP-1). We further demonstrated that direct blockade of MCP-1 using neutralizing antibodies inhibits mast cell migration.Conclusion: Low-dose ionizing radiation inhibits mast cell migration through the regulation production of MCP-1 by Nr4a2 in the activated mast cell system.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call