Abstract
Carbon monoxide (CO) is produced by the action of the heme oxygenase (HO) complex through the oxidation of heme. CO, like nitric oxide (NO), is a molecular gas that among other actions stimulates guanylyl cyclase and increases cGMP levels in smooth muscle cells, regulating the vascular tone. Acute hypoxia generates pulmonary hypertension and increases the expression of inducible HO isoform (HO-1) in the vascular endothelium. Inhaled NO causes a potent pulmonary vasodilation. We hypothesized that inhaled CO might produce similar actions as NO on pulmonary vascular resistance (PVR). To test our contention, we studied the effects of inhaled CO (40 ppm) in the augmented PVR observed during hypoxemia. Five chronically instrumented German Merino sheep were submitted to a protocol consisting of 20 min of normoxemia (N), 20 min of isocapnic hypoxemia (H20), 20 min of isocapnic hypoxemia plus CO 40 ppm (H40), and 20 min of recovery (R). In the control protocol, we did not administer inhaled CO. Arterial gases and pH, percentage of carboxyhemoglobin (COHb), systemic and pulmonary arterial pressure, systemic and pulmonary vascular resistance, and cardiac output were measured during each period. During H20 period, there was a significant increase in cardiac output and PVR in sheep submitted to both protocols. The sheep treated with inhaled CO (H40 + CO) showed a modest but significant decrease (16%) in the elevated PVR. Our data indicate that inhaled CO decreases pulmonary vascular resistance associated with acute hypoxemia in adult sheep.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.