Abstract
Exogenous erythropoietin (EPO) is used to treat anemia in patients with chronic kidney disease (CKD). Concerns about the possible adverse effect of EPO on the progression of CKD have been raised owing to nonerythroid cell effects. We investigated the effects of low-dose EPO, independent of correcting anemia, on existing glomerulosclerosis. Adult mice underwent 5/6 nephrectomy and were randomized into the following 4 groups at week 8 after surgery: vehicle (VEH), losartan (angiotensin II type 1 receptor blocker [ARB]), darbepoetin-α (DA), or combination (DA+ARB). Four weeks later, mice were euthanized, followed by evaluation of renal structure and function. Glomerular endothelial cells and podocytes were cultured to evaluate the effects of DA on cell migration, apoptosis, and Akt signaling. ARB reduced blood pressure, albuminuria, and the level of serum creatinine and increased hematocrit compared with VEH, whereas low-dose DA only reduced the level of serum creatinine. Combination treatment showed a trend to increase hematocrit and survival compared with ARB alone. Combination treatment but not ARB alone significantly reduced the progression of glomerulosclerosis compared with VEH. Low-dose DA resulted in more preserved glomerular and peritubular capillary endothelial cells with increased p-Akt and even further endothelial cell preservation in combination with ARB. In cultured glomerular endothelial cells, angiotensin II induced more apoptosis, reduced migration, and decreased p-Flk1, a receptor for the proangiogenic vascular endothelial growth factor. DA counteracted these injuries and increased p-Akt, a key factor in angiogenesis and cell survival. DA also protected cultured podocytes against transforming growth factor β–induced apoptosis and synaptopodin loss. Low-dose EPO directly protects glomerular and peritubular endothelial cells via Akt phosphorylation. Therefore, treatment using a combination of low-dose EPO and ARB results in less progression of glomerulosclerosis in an experimental CKD model.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.