Abstract

Low-Dose computer tomography (LDCT) is an ideal alternative to reduce radiation risk in clinical applications. Although supervised-deep-learning-based reconstruction methods have demonstrated superior performance compared to conventional model-driven reconstruction algorithms, they require collecting massive pairs of low-dose and norm-dose CT images for neural network training, which limits their practical application in LDCT imaging. In this paper, we propose an unsupervised and training data-free learning reconstruction method for LDCT imaging that avoids the requirement for training data. The proposed method is a post-processing technique that aims to enhance the initial low-quality reconstruction results, and it reconstructs the high-quality images by neural work training that minimizes the ℓ1-norm distance between the CT measurements and their corresponding simulated sinogram data, as well as the total variation (TV) value of the reconstructed image. Moreover, the proposed method does not require to set the weights for both the data fidelity term and the plenty term. Experimental results on the AAPM challenge data and LoDoPab-CT data demonstrate that the proposed method is able to effectively suppress the noise and preserve the tiny structures. Also, these results demonstrate the rapid convergence and low computational cost of the proposed method. The source code is available at https://github.com/linfengyu77/IRLDCT.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.