Abstract

Chronic cadmium (Cd) toxicity is a significant health concern, and the mechanism of long-term low-dose Cd exposure on bone has not been fully elucidated till date. This study aimed to assess the association between rat mesenchymal stem cells (MSCs) and long-term Cd exposure through 38-week intake of CdCl2 at 1 and 2 mg/kg body weight (bw). Increased gene expression of receptor activator of NF-κB ligand (RANKL) and decreased gene expression of osteoprotegerin (OPG) were observed. Fold change of RANKL gene expression (fold change = 1.97) and OPG gene expression (fold change = 1.72) showed statistically significant differences at dose 2 mg/kg bw. Decreased expression of key genes was observed during the early osteogenic differentiation of MSCs. The gene expression of Osterix in 1 mg/kg bw group was decreased by 3.70-fold, and the gene expressions of Osterix, Osteopontin, collagen type I alpha 2 chain (COL1a2) and runt-related transcription factor 2 (RUNX2) in 2 mg/kg bw group were decreased by 1.79, 1.67, 1.45 and 1.35-folds, respectively. Exposure to CdCl2 induced an increase in the renal Cd load, but only an adaptive response was observed, including increased expression of autophagy-related proteins LC3B and Beclin-1, autophagy receptor p62, and heme oxygenase 1 (HO-1), which is an inducible isoform that releases in response to stress. There were no significant changes in the urinary low molecular weight proteins including N-acetyl-b-D-glucosaminidase (NAG), β2-microglobulin and albumin (U-Alb). Urinary calcium (Ca) excretion showed no increase, and no obvious renal histological changes. Taken together, these results indicated that the chronic CdCl2 exposure directly act on MSCs through RANKL/OPG pathway and downregulate the key genes involved in osteogenic differentiation of MSCs. The toxic effect of Cd on bone may occur in parallel to nephrotoxicity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call