Abstract

We introduced and evaluated the techniques LightSpeed VCT uses to reduce X-ray dose and image noise in cardiac helical CT applications. These techniques include the use of much improved VCT data acquisition system (VDAS) with reduced electronic noise; cardiac bowtie that redistributes X-rays to have more signals for heart and much less flux to the peripheries; adaptive post-processing filters to reduce cardiac image noise; and ECG modulated tube currents to concentrate X-ray dose for desired cardiac phases. Phantom and patient scans were used to evaluate the dose saving and noise reduction potentials of these techniques. The results demonstrated that the improved VDAS reduced image noise 15-20% for cardiac imaging. With same scan technique, the use of cardiac bowtie reduced about 10% dose in terms of CTDIw measurement and clinical evaluation demonstrated additional 7% image noise reduction and equivalent image quality with cardiac bowtie vs. regular body bowtie. The adaptive filter generated 15-20% noise reduction while maintaining image resolution and artery sharpness. Finally, the use of ECG modulated mA method provided up to 50% dose reduction based on CTDIw measurements, but the saving potentials depended on the heart rate and cardiac phase selection. For heart rate of 60bpm and ±15% cardiac phase margin, the average dose reduction could be 30%. Since these dose and noise reduction methods are inclusive and can be combined to produce even greater dose/noise reduction. It is reasonable to believe that with VCT we maybe able to acquire cardiac helical CT images with only 30-40% of the dose of older generation 16-slice CT scanners with similar noise level and same slice thickness.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.