Abstract

PurposeThree-dimensional (3D) measurement of intracranial aneurysms is important in planning endovascular treatment, and 3D rotational angiography (RA) is effective in accurate measurement. The purpose of this study was to evaluate the feasibility of low dose 3D RA (5 seconds 0.10 μGy/frame) in measuring an intracranial aneurysm using an in vitro phantom.Materials and MethodsWe investigated an in vitro 3D phantom of an intracranial aneurysm with 10 acquisitions of 3D RA with a conventional dose (5 seconds 0.36 μGy/frame) and 10 acquisitions with a low-dose (5 seconds 0.10 μGy/frame). 3D size and neck diameters of the aneurysm were measured and compared between the 2 groups (conventional and low-dose) using noninferiority statistics.ResultsThe aneurysm measurements were well-correlated between the 2 readers, and noninferiority in the measurement of aneurysmal size of low-dose 3D RA was demonstrated, as the upper margin of the 1-sided 97.5% confidence interval did not cross the pre-defined noninferiority margin of 0.2 mm by the 2 readers.ConclusionLow-dose (5 seconds 0.10 μGy/frame) cerebral 3D RA is technically feasible and not inferior in in vitro 3D measurement of an intracranial aneurysm. Thus, low-dose 3D RA is promising and needs further evaluation for its clinical utility in the planning of endovascular treatment of an intracranial aneurysm.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.