Abstract

Stimulated Brillouin scattering (SBS) has been recently shown to offer a mechanism for generating tunable all-optical delays in room-temperature single-mode optical fibers at telecommunication wavelengths. This technique makes use of the rapid variation of the refractive index that occurs in the vicinity of the Brillouin gain resonance. When the slow light pulse delay is subject to a constraint on the allowable pulse distortion, it has been shown that the use of a pair of closely-spaced Brillouin gain lines can increase the distortion-constrained delay, with respect to the single-line configuration. In this paper, we numerically and experimentally demonstrate that the same experimental apparatus usually employed for generating a Brillouin gain doublet, can also be used for achieving three equally-spaced Brillouin gain resonances, further increasing the distortion-constrained pulse delay.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.