Abstract

We use neuroevolutionary learning to identify time-dependent protocols for low-dissipation self-assembly in a model of generic active particles with interactions. When the time allotted for assembly is sufficiently long, low-dissipation protocols use only interparticle attractions, producing an amount of entropy that scales as the number of particles. When time is too short to allow assembly to proceed via diffusive motion, low-dissipation assembly protocols instead require particle self-propulsion, producing an amount of entropy that scales with the number of particles and the swim length required to cause assembly. Self-propulsion therefore provides an expensive but necessary mechanism for inducing assembly when time is of the essence.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.