Abstract

Structures containing periodically alternating elements, which are a source of high-order waves, are investigated as low-dimensional waveguide microwave photonic crystals. The band character of the transmittance and the reflectance of a photonic crystal, which consists of sequentially alternating dielectric layers and thin metallic plates partially overlapping the waveguide section, is revealed by the numerical modeling and the experimental investigation of amplitude-frequency characteristics. It has been shown that the application of metallic plates with gaps in the structure of the photonic crystal made it possible to decrease its longitudinal size substantially compared with photonic crystals fabricated based on elements made of alternating dielectric layers with various permittivities.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.