Abstract

Methanol-$\ensuremath{\beta}$-hydroquinone clathrate has been established as a model system for dielectric ordering and fluctuations and is conceptually close to magnetic spin systems. In x-ray and neutron diffraction experiments, we investigated the ordered structure, the one-dimensional (1D) and the three-dimensional critical scattering in the paraelectric phase, and the temperature dependence of the lattice constants. Our results can be explained by microscopic models of the methanol pseudospin in the hydroquinone cage network, in consistency with previous dielectric investigations. A coupling of the 1D fluctuations to local strains leads to an anomalous temperature dependence of the 1D lattice parameter in the paraelectric regime.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.