Abstract
Thanks to progress in material science and nanotechnologies, surfaces and thin films can now be structured at different scales. Photonics components take advantage of this possibility to fulfill still more and more complex functions. They are composed of organic and inorganic materials, dielectrics, semiconductors, and metallic materials, or a mixture of them. Multiscale and chiral structures can be used to control both spectral and spatial distributions of light together with its polarization state. The optical mode density in the near field and in the far field can then be designed in particular by combining more or less resonant structures for the optical waves, associating diffraction, interferences, and anisotropic structures like Fabry–Perot, waveguide, plasmons, and photonic crystals. Artificially nanostructured materials, often called metamaterials, exhibit new properties. Different phenomena, including optical topological insulator and structures for vortex waves transporting angular momentum of photons, are discussed and illustrated. With the development of nanometer size structures, another step is taken toward allowing control of the intimate interaction of optical waves with materials to tune their basic electronic properties and permittivity. Both optical and electronic properties are also strongly dependent on coupling effects and need a global approach.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.