Abstract

Electrical resistivity and magnetotransport are explored for thin (3–30 nm), epitaxial LaNiO3 films. Films were grown on three different substrates to obtain LaNiO3 films that are coherently strained, with different signs and magnitude of film strain. It is shown that d-band transport is inhibited as the layers progress from compression to tension. The Hall coefficient is “holelike.” Increasing tensile strain causes the film resistivity to increase, causing strong localization to appear below a critical thickness.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call