Abstract

We study the learning dynamics and the representations emerging in recurrent neural networks (RNNs) trained to integrate one or multiple temporal signals. Combining analytical and numerical investigations, we characterize the conditions under which an RNN with n neurons learns to integrate D(≪n) scalar signals of arbitrary duration. We show, for linear, ReLU, and sigmoidal neurons, that the internal state lives close to a D-dimensional manifold, whose shape is related to the activation function. Each neuron therefore carries, to various degrees, information about the value of all integrals. We discuss the deep analogy between our results and the concept of mixed selectivity forged by computational neuroscientists to interpret cortical recordings.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.