Abstract

We study low-dimensional dynamics in a Kuramoto model with inertia and Hebbian learning. In this model, the coupling strength between oscillators depends on the phase differences between the oscillators and changes according to a Hebbian learning rule. We analyze the special case of two coupled oscillators, which yields a five-dimensional dynamical system that decouples into a two-dimensional longitudinal system and a three-dimensional transverse system. We readily write an exact solution of the longitudinal system, and we then focus our attention on the transverse system. We classify the stability of the transverse system’s equilibrium points using linear stability analysis. We show that the transverse system is dissipative and that all of its trajectories are eventually confined to a bounded region. We compute Lyapunov exponents to infer the transverse system’s possible limiting behaviors, and we demarcate the parameter regions of three qualitatively different behaviors. Using insights from our analysis of the low-dimensional dynamics, we examine the original high-dimensional system in a situation in which we draw the intrinsic frequencies of the oscillators from Gaussian distributions with different variances.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.