Abstract

Methods for extending the advective upwind splitting method (AUSM) family of low-diffusion flux-splitting schemes to operate effectively at all flow speeds are developed. The extensions developed are designed for use with time-derivative preconditioning and are based on the idea that the speed of sound should cease to be an important scaling parameter for the diffusive contributions to the interface flux as the Mach number becomes small. Using this criterion, alternative definitions for the interface Mach numbers are developed, and methods for ensuring pressure-velocity coupling at low speeds are formulated. Results are presented for inviscid flows through a channel at various Mach numbers, developing viscous flow in a two-dimensional duct, driven-cavity flows at various Mach and Reynolds numbers, flow over a backward-facing step, and hydrogen-nitrogen mixing layers

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.