Abstract
Substitution boxes (S-boxes) play a central role in block ciphers. In substitution-permutation networks, the S-boxes should be permutation functions over F2n to realize the invertibility of the encryption. More importantly, the S-boxes should have low differential uniformity, high nonlinearity, and high algebraic degree in order to resist differential attacks, linear attacks, and higher order differential attacks, respectively. In this paper, we construct new classes of differentially 4 and 6-uniform permutations by modifying the image of the Dobbertin APN function xd with d=24k+23k+22k+2k−1 over a subfield of F2n. In addition, the algebraic degree and the lower bound of the nonlinearity of the constructed functions are given.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.