Abstract
AbstractA 2,6‐dimethylphenol‐dipentene dicyanate ester (DPCY) was synthesized from the reaction of 2,6‐dimethylphenol‐dipentene adduct and cyanogen bromide. The proposed structure was confirmed by Fourier transform infrared (FTIR), elemental analysis, mass, and nuclear magnetic resonance (NMR) spectra. DPCY was then cured by itself or cured with bisphenol A dicyanate ester (BADCY). Thermal properties of cured epoxy resins were studied using differential scanning calorimetry (DSC), dynamic mechanical analysis (DMA), dielectric analysis (DEA), and thermogravimetric analysis (TGA). These data are compared with those of BADCY. The cured DPCY exhibits a lower dielectric constant (2.61 at 1 MHz), dissipation factor (29.3 mU at 1 MHz), thermal stability (5% degradation temperature and char yield are 429 °C and 17.64%, respectively), glass transition temperature (246 °C by TMA and 258 °C by DMA), coefficient of thermal expansion (33.6 ppm before Tg and 134.1 ppm after Tg), and moisture absorption (0.95% at 48 h) than those of BADCY, but higher moduli (5.12 GPa at 150 °C and 4.60 GPa at 150 °C) than those of the bisphenol A system. The properties of cured cocyanate esters lie between cured BADCY and DPCY, except for moduli. Moduli of some cocyanate esters are even higher than those of cured BADCY and DPCY. A positive deviation from the Fox equation was observed for cocyanate esters. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 3986–3995, 2004
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Journal of Polymer Science Part A: Polymer Chemistry
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.