Abstract

Low-density, transparent aerogels based on a hexylene-bridged polysilsesquioxane ([O1.5Si–(CH2)6–SiO1.5] n ) network have been prepared for the first time via a simple sol–gel process. An optimized base-catalyzed one-step hydrolysis–polycondensation process of a bridged alkoxysilane precursor 1,6-bis(trimethoxysilyl)hexane in a low-polarity solvent N,N-dimethylformamide allows for the formation of a pore structure of a length scale of several tens nanometers, resulting in low-density, transparent aerogels after supercritical drying. Because of the incorporated organic moiety that bridges the silicon atoms in the network, these aerogels show higher flexibility and strength against compression and bending as compared to silica aerogel counterparts. In addition, minimizing the residual silanol groups in the network by a surface modification with hexamethyldisilazane has further improved resilience after compression and bending flexibility and strength, due to the decreased chance of the irreversible formation of the siloxane bonds upon compression. The resulting trimethylsilylated hydrophobic gels have been subjected to ambient pressure drying to obtain xerogels, resulting in low-density (0.13 g cm−3, 90 % porosity), transparent (71 % transmittance) xerogels. These results are promising for the development of transparent thermal superinsulators applicable to window insulating systems that manage heat transfer in a more efficient way.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.