Abstract

A method was developed to fabricate light, water-insoluble silk fibroin nanofibrous aerogels (SNFAs) through solvent welding of lyophilized silk nanofibrous 3D networks at the junction points while converting silk structures from random-coils to β-sheets (water insoluble). Aromatic alcohols, especially phenethyl alcohol (PEA), supported robust solvent welding and the structural conversion of silk. PEA vapor treatment was a better approach than solvent infusion to retain volume, density, and mechanical strength of the SNFAs. The mechanical properties of highly orientated SNFAs were superior to randomly distributed fibers. The SNFAs had a low density (3.5 mg/cm3), high hydrophobicity (140.9°), and a porous surface morphology on the individual nanofibers, resulting in high efficiency and selectivity for absorbing particulate matter and oils. Compared with commonly used inorganic aerogels, the SNFAs developed in this study are biocompatible, easily functionalized, environmentally friendly, and low-cost and therefore have potential for air and water purification, biosensors, drug delivery, and tissue engineering.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.