Abstract

BackgroundLow density Plasmodium falciparum infections, below the microscopic detection limit, may play an important role in maintaining malaria transmission in low endemic areas as well as contribute to the maintenance of acquired immunity. Little is known about factors influencing the occurrence of sub-microscopic parasitaemia or the relation with immune responses.We investigated possible associations between the occurrence of sub-microscopic P. falciparum parasite carriage and antibody responses to the asexual stage antigens, G6PD deficiency and α+-thalassaemia in 464 subjects from a low endemic area in northern Tanzania.MethodsWe used samples collected from two cross sectional surveys conducted during dry and wet season in 2005. Submicroscopic parasitaemia was detected by using quantitative nucleic acid sequence based amplification (QT-NASBA). Genotyping for G6PD and α+-thalassaemia were performed by high throughput PCR; the prevalence and level of total IgG antibodies against MSP-1, MSP-2 and AMA-1 were determined by ELISA.ResultsCompared to parasite free individuals, individuals carrying sub-microscopic densities of P. falciparum parasites had significantly higher median antibody levels to MSP-1 (p = 0.042) and MSP-2 (p = 0.034) but not to AMA-1 (p = 0.14) while no clear relation between sub-microscopic parasite carriage and G6PD deficiency or α+-thalassaemia was observed.ConclusionOur data suggest a role for sub-microscopic parasite densities in eliciting or maintaining humoral immune responses without evidence for a modulating effect of G6PD deficiency or α+-thalassaemia.

Highlights

  • Low density Plasmodium falciparum infections, below the microscopic detection limit, may play an important role in maintaining malaria transmission in low endemic areas as well as contribute to the maintenance of acquired immunity

  • Little is known about factors influencing the occurrence of sub-microscopic parasitaemia and whether their presence may be associated with protective immune responses

  • We investigate for possible associations between sub-microscopic P. falciparum parasite carriage, red blood cell polymorphisms and antibody responses to the asexual stage antigens that were recently explored as indicators of exposure to parasite antigen[28]: Merozoite Surface Protein (MSP)-1, MSP-2 and Apical Membrane Antigen (AMA)-1

Read more

Summary

Introduction

Low density Plasmodium falciparum infections, below the microscopic detection limit, may play an important role in maintaining malaria transmission in low endemic areas as well as contribute to the maintenance of acquired immunity. Little is known about factors influencing the occurrence of sub-microscopic parasitaemia or the relation with immune responses. Sub-microscopic infections may play a role in maintaining malaria transmission in areas of low malaria endemicity. Despite their potential importance, little is known about factors influencing the occurrence of sub-microscopic parasitaemia and whether their presence may be associated with protective immune responses. Long-term asymptomatic carriage of parasites at microscopic densities has been associated with protective immunity against subsequent clinical malaria attacks [10,11]. Despite indications from an experimental study showing that exposure to ultra low-dose infections may elicit protective immunity [12], there have been no field studies confirming the capacity of sub-microscopic infections to elicit or maintain immune responses

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call