Abstract

Low density polypropylene based foams with different cellular structures have been produced by the improved compression molding route using a high melt strength polypropylene as polymer matrix. In addition, different types of nanoparticles have been introduced in the formulation (multi-wall carbon nanotubes, organomodified nanoclays and natural nanoclays) to modify the structure and properties. The results have showed a clear correlation between the open cell content of the foams and the mechanical properties in compression. In the unfilled polypropylene high specific mechanical properties are only achievable with low values of open cell content. In comparison, for an equal value of the interconnectivity between cells, the samples containing nanoclays present much higher specific properties. This result is attributed to the reinforcement of these nanoparticles in the solid matrix, due to an improved exfoliation during the foaming process and the presence of a bimodal cellular structure. The produced foams have interesting properties with stiffness similar to those of commercial polymer foams used for the core of sandwich panels.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call