Abstract
The instability of a Fermi-liquid drop with respect to bulk density distortions is considered. It is shown that the presence of the surface strongly reduces the growth rate of the bulk instability of the finite Fermi-liquid drop because of the anomalous dispersion term in the dispersion relation. The instability growth rate is reduced due to the Fermi surface distortions and the relaxation processes. The dependence of the bulk instability on the multipolarity of the particle density fluctuations is demonstrated for two nuclei $^{40}Ca$ and $^{208}Pb$.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.