Abstract

The titanium dioxide (TiO2) films prepared by sol-gel processing were used to fabricate metal-semiconductor-metal ultraviolet photodetectors. A very low dark current of 5.38 pA (current density of 3.84 nA/cm2) at 5 V bias is obtained, which is ascribed to the high effective Schottky barrier between Au and TiO2 films. The x-ray photoelectron spectroscopy analysis demonstrates that the concentration of oxygen vacancies is very low in the surface of the TiO2 films, which is responsible for the high effective Schottky barrier. The devices exhibit a cutoff wavelength at about 380 nm and a large UV-to-visible rejection ratio (340 versus 400 nm) of three orders of magnitude. The peak responsivity of the devices is 17.5 A/W at 5 V bias, indicating the presence of internal photoconductive gain induced by desorption of oxygen on the TiO2 surface.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.