Abstract

Performance demands for many devices has driven feature dimensions to reduce to sub nm scale. Whilst new, and complex combinations of materials have increased the importance of interface effects at the atomic scale. Many of the macro-market dynamics such as Internet of Everything, increased volume in data traffic and energy efficiency require III-V based devices eg GaN, SiC. The combination of new materials and dimensions means that new etch solutions are required to achieve the accuracy and low damage needed for optimized device results. Low damage etching of AlGaN, GaN and SiN layers were studied using the PlasmaPro100 Cobra300 system from Oxford Instruments Plasma Technology, configured with ICP-RIE, RIE and ALE plasma etching modes. These techniques were used to etch shallow depths of between 5 and 100 nm in both SiN, AlGaN and GaN substrates and the resultant etched surface layer quality was measured using Atomic Force Microscopsy (AFM). ALE of SiN and GaN showed etch rates of 2.5 nm/min and 2 nm/min respectively. Using a conventional ICP-RIE process a GaN etch rate of 50 nm/min with a selectivity to AlGaN of 25:1 was achieved.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.