Abstract

The low cycle fatigue (LCF) characteristics of nickel-based single crystal (SC) superalloy have been experimentally and numerically investigated. The effects of crystallographic orientation, load ratio and stress concentration are studied. In order to model the effect of crystallographic orientation, a new orientation factor, which is relevant to the yield strength, is constructed. On the other hand, a new asymmetrical loading factor is introduced to describe the effect of load ratio. The LCF model for SC superalloy smooth specimen is established with these new damage parameters. The effect of the strain gradient on the LCF life of SC superalloy is further studied, which is applied to the evaluation of the LCF life of SC superalloy notched specimen. The LCF model proposed is validated by the experimental data of SC superalloy DD3 and PWA1480.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.