Abstract

In this paper we propose a methodology for a fast numerical determination of low cycle fatigue lifetime of superelastic shape memory alloy structures. This method is based on the observation that generally, in low cycle fatigue, shape memory alloy (SMA) structures are subject to loadings that lead to a confined non-linear behaviour at stress concentration points, such as notches. Numerical fatigue lifetime prediction requires the computation of the mechanical state at critical points. However, classical computational methods, like the non-linear finite element method, lead to a prohibitive computation time in a non-linear cyclic framework. To overcome this issue, we propose to use fast prediction methods, based on localization laws. Following the determination of the stabilized behaviour, an energetic fatigue criterion is applied. The numerical fatigue life prediction model is validated experimentally on SMA endodontic instruments.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call