Abstract
Wind energy has the advantages of being clean and renewable. Wind turbine towers endure horizontal cyclic loads that could influence the performance of entire structure. To clarify the low-cycle fatigue behaviour of concrete-filled double skin steel tubular (CFDST) members, a total of 16 specimens were experimented. The hollow, slenderness, and axial compression ratios are specifically designed to clarify the effects on performance under constant amplitude loading and hysteretic loading conditions. The typical failure modes under both loading conditions and the relationship between loop strain, loop bearing capacity, loop energy dissipation, cycle number, and various degradation indices were analysed. Studies indicate that the failure mode under low-cycle fatigue loading is mainly local deformation, which includes transverse fracture occurring at the region between the steel tube and ribbed stiffener, the crushing concrete. Fatigue specimens with different amplitudes exhibit varying shapes of hysteresis responses. Higher amplitudes could enhance damage and significantly reduce fatigue life. Increasing the hollow and axial compression ratios boosts the energy dissipation capacity, and decreasing the slenderness ratio enhances the lateral resistance. A 2 % constant amplitude preload intensifies the degradation of bearing capacity and energy dissipation under subsequent constant amplitude loading.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.