Abstract
The room temperature cyclic deformation of a cast and extruded NiAl alloy has been investigated. Low-cycle fatigue tests were performed under plastic strain control at strain ranges from 0.0002 to 0.0016. Cyclic hardening behavior has been analyzed and compared to the monotonic tensile and compressive behavior of the same material. Electroless nickel films applied to NiAl samples have little effect on monotonic deformation behavior, but do have a significant effect on cyclic deformation behavior, particularly cyclic stress asymmetry. Fractographic analysis has suggested that cycling at low plastic strain ranges may promote stable microcracking, while step testing indicates that cycling at lower plastic strain ranges can improve the cyclic life and/or stress levels achieved at the higher plastic strain ranges. Low plastic strain range cyclic prestrain can also significantly increase the monotonic tensile yield and ultimate strength of the material while most of the tensile ductility is retained.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.