Abstract

The low-cycle fatigue behavior of polycrystalline NiAl was determined at 1000 K, a temperature above the monotonic brittle-to-ductile transition temperature (BDTT). Fully reversed, plastic strain-controlled fatigue tests were conducted on B2 intermetallic samples prepared by two fab-rication techniques: hot isostatic pressing (HIP) of prealloyed powders and extrusion of vacuum induction-melted [cast plus extruded (C+E)] castings. At 1000 K, in an air environment both the hot-isostatically pressed (“hipped”) and C + E samples cyclically softened throughout most of their fatigue lives, though the absolute change in stress was no greater than about 35 MPa. At this temperature, samples were insensitive to processing defects, which were a source of failure initiation in room-temperature tests. The processing method had a small effect on fatigue life; the lives of the hipped samples were about a factor of 3 shorter than the fatigue lives of the C+E NiAl. The C+E material also underwent dynamic grain growth during testing, while the hipped NiAl maintained a constant grain size. Stable fatigue-crack growth in both materials was intergranular in nature, while final fracture by tensile overload occurred by transgranular cleavage. However, at plastic strain ranges below 0.3 pct, the fatigue lives of the hipped NiAl were controlled by intergranular cavitation and creep processes such that the fatigue lives were shorter than anticipated. Finally, hipped samples tested in vacuum had a factor of 3 longer life than specimens tested in air. A comparison of NiAl to typical superalloys (which it may replace) showed that NiAl exhibited a superior fatigue life on a plastic strain basis but was inferior to most superalloys on a stress basis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call