Abstract

Alloy 800H is currently being considered as one of the near-term candidate materials for design and construction of some major high temperature components of a very high temperature reactor (VHTR). System start-ups and shut-downs as well as power transients will produce low-cycle fatigue loadings of components. The aim of this work is to study the low cycle fatigue behavior of Alloy 800H base metal and weldments at 700°C. The weldment specimens were machined from gas tungsten arc welding (GTAW) butt-welded plate such that the loading direction was oriented transverse to the welding direction. Fully reversed total-strain controlled low-cycle fatigue tests have been performed at total strain ranges of 0.6, 0.9, 1.2 and 1.5%. For all the low-cycle fatigue tests, triangular test waveforms with a constant strain rate of 10−3/s were applied. Low-cycle fatigue testing was conducted in accordance with ASTM Standard E606 on servo-hydraulic test machines. And also, creep-fatigue experiments were carried out at 700°C employing 0.6% total strain range and 10−3/s strain rate using trapezoidal waveform with tension hold time. The main focus is to characterize the low-cycle fatigue properties for Alloy 800H weldment specimens from the cyclic deformation behavior and fatigue fracture behavior. The cyclic deformation behavior was influenced by total strain range and material property. The fatigue life was decreased with increasing the total strain range for both base metal and weldment. However, the lives of weldment specimens have a longer life than that of base metal at lower total strain ranges. It was also observed that creep effects play a significant role in fatigue life reduction.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call