Abstract

AbstractThe LC deformation behaviour of Zry‐4 at 400°C and 600°C was examined by means of tension/compression experiments conducted in load and in strain control respectively. The main results were compared to those obtained at comparable conditions on the stainless steel type AISI 304. For both the materials the influence of the stress ratio R = σmin/σmax (where within one test σmax > 0 was kept constant) upon the lifetime Tf at low and high homologeous temperature Th was examined. Whereas at the lower Th for R < 0 the lifetime decreased with decreasing R, the opposite was true at the higher Th. The explanation of the influence of R upon tf suggests that at high temperatures the fatigue damage rate Åf drops below the rate for creep damage Åc Two cases are considered. If the above damage mechanisms are sequentially independent the resulting damage rate Å ≈︁ Åc and hence Åc is the failure (rate) determining mechanism. In the case that the mechanisms are sequentially dependent then Å ≈︁ Åf. TEM investigations conducted on Zry‐4 cycled at 600° C have shown that the typical dislocation pattern revealed is a band structure consisting of dense dislocation walls separating denuded zones. The habit and the crystallographic characteristics of the band structure resemble the structure associated with PSBs observed in fee metals. The comparison of the values of the saturation stress τs and the wall spacing d for different fee and hep metals shows that there is a proportionality between τs and 1/d which is independent of stress and temperature.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call