Abstract

Adversarial training is one of the most effective defenses against adversarial attacks. Previous works suggest that overfitting is a dominant phenomenon in adversarial training leading to a large generalization gap between test and train accuracy in neural networks. In this work, we show that the observed generalization gap is closely related to the choice of the activation function. In particular, we show that using activation functions with low (exact or approximate) curvature values has a regularization effect that significantly reduces both the standard and robust generalization gaps in adversarial training. We observe this effect for both differentiable/smooth activations such as SiLU as well as non-differentiable/non-smooth activations such as LeakyReLU. In the latter case, the "approximate" curvature of the activation is low. Finally, we show that for activation functions with low curvature, the double descent phenomenon for adversarially trained models does not occur.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.