Abstract

A rapid, precise, low cost, selective and sensitive paper-based electrochemical device for the determination of H2O2 in milk is described here. Commercially available varnish and a simple hand drawing method were used to develop the hydrophobic pattern to generate a hydrophilic detection zone on the filter paper. The electrode system was fabricated on the detection zone in order to detect H2O2 electrochemically. A commercially available graphite pencil and conductive silver ink were used to fabricate the counter electrode and pseudo-reference electrode, respectively. A paste of Prussian blue (PB) modified graphite, unmodified graphite and phenol-formaldehyde polymer were used to fabricate a PB modified graphite working electrode on paper. This modified electrode showed electrocatalytic activity towards the reduction of H2O2 and it was successfully used for the chronoamperometric detection of H2O2 at 0 V vs Ag reference electrode in 0.1 mol l-1 phosphate buffer, buffered at pH 6.0 in 0.1 mol l-1 KCl. Under optimum conditions, the calibration curve for the H2O2 determination was linear from 5 to 50 mmol l-1 with a detection limit (LoD = x ̅ + 3SD) of 4.0 mmol l-1. In addition, the PB modified graphite electrode showed selectivity for H2O2 detection in the presence of ascorbic acid, sucrose and citric acid.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call