Abstract

Ceramic membranes have been gaining so much interest for oily water separation due to their superior characteristics such as good anti-fouling property, superhydrophilic, as well as excellent thermal and chemical stabilities. However, ceramic membranes are very expensive which hinders their uses in large scale applications. Therefore, the aim of our study is to develop a low cost palm oil fuel ash (POFA) based ceramic hollow fiber ceramic membrane for oily water separation application. An asymmetric membrane structure consisting of sponge-like and macrovoid layers were acquired using a combined phase inversion and sintering technique. The membranes were sintered at different temperatures ranging from 1000 to 1150 °C. The sintered membranes were characterized in terms of morphology, mechanical strength, porosity, permeate flux and oil rejection performance. A high oil rejection efficiency of up to 96.0% was obtained for the membrane sintered at 1050 °C with the permeate flux of 185.42 L/m2h at the applied pressure of 3 bar. Based on the comparison with other ceramic membranes reported in the literature, it can be concluded that POFA based ceramic hollow fiber membrane showed a comparable performance and thus can be a promising low cost alternative ceramic membrane for oily water separation application.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call