Abstract

Automated inspection systems utilizing computer vision technology are effective in managing traffic control devices (TCDs); however, they face challenges due to the limited availability of training datasets and the difficulty in generating new datasets. To address this, our study establishes a benchmark for cost-effective model training methods that achieve the desired accuracy using data from related domains and YOLOv5, a one-stage object detector known for its high accuracy and speed. In this study, three model cases were developed using distinct training approaches: (1) training with COCO-based pre-trained weights, (2) training with pre-trained weights from the source domain, and (3) training with a synthesized dataset mixed with source and target domains. Upon comparing these model cases, this study found that directly applying source domain data to the target domain is unfeasible, and a small amount of target domain data is necessary for optimal performance. A model trained with fine-tuning-based domain adaptation using pre-trained weights from the source domain and minimal target data, proved to be the most resource-efficient approach. These results contribute valuable guidance for practitioners aiming to develop TCD models with limited data, enabling them to build optimal models while conserving resources.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.