Abstract

Water splitting is a sustainable approach for production of hydrogen to fuel some clean energy technologies. This process, unfortunately, has been significantly impeded by the puzzles in either the efficient but economically unaffordable noble-metal-based catalysts or the low-cost but kinetically sluggish abundant-element-based catalysts. Particularly, the discovery of efficient bifunctional catalysts that can simultaneously trigger the reactions of both anode and cathode for overall water splitting still remains as a grand challenge. Herein, a novel low-cost bifunctional Ni2P/Ni0.96S heterostructured electrocatalyst, which is active for both the urea oxidation reaction at the anode and the hydrogen evolution reaction at the cathode, is innovated for high-efficiency overall splitting of urea-rich wastewater. A systematic configuration of a Ni foam (NF)-supported Ni2P/Ni0.96S catalyst electrode exhibits superior catalytic activity and stability. The Ni2P/Ni0.96S/NF||Ni2P/Ni0.96S/NF cell needs only 1.453 V to reach a current density of 100 mA/cm2 in basic urea-containing water, while it is 1.693 V for a reference noble-based Pt/C/NF||IrO2/NF electrolysis cell. This work therefore not only contributes to develop a low-cost, high-efficiency, bifunctional electrocatalyst but also provides a practically feasible approach for urea-rich wastewater treatment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.