Abstract

We describe a low cost thin-film transistor (TFT) nanoribbon sensor for detection of the inflammatory biomarker C-reactive protein (CRP) in human serum via a miniature bead-based enzyme-linked immunosorbent assay (ELISA). The TFT nanoribbon sensor measures the reaction products from the ELISA via pH changes. The bead-based ELISA decouples the protein functionalization steps from the sensor surface, increasing the signal and simplifying the assay. The ability to directly sense proteins in human serum in this way overcomes the Debye length limitation associated with nanowire and nanoribbon biosensors. Compared to classically fabricated nanowires, the TFT nanoribbon sensors are simple, extremely easy to fabricate, and should therefore be much cheaper to manufacture. TFT nanoribbon sensors, configured to measure pH, were used for quantitative detection of CRP spiked into human serum at concentrations as low as 0.2 ng/mL, which is 10 000 times lower than needed for diagnostic purposes, providing the potential for applications that require very high sensitivity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.