Abstract

IoT devices need reliable hardware at low cost. It is challenging to efficiently cope with both hard and soft faults in embedded scratchpad memories. To address this problem, we propose a two-step approach: FaultLink and Software-Defined Error-Localizing Codes (SDELC). FaultLink avoids hard faults found during testing by generating a custom-tailored application binary image for each individual chip. During software deployment-time, FaultLink optimally packs small sections of program code and data into fault-free segments of the memory address space and generates a custom linker script for a lazy-linking procedure. During run-time, SDELC deals with unpredictable soft faults via novel and inexpensive Ultra-Lightweight Error-Localizing Codes (UL-ELCs). These require fewer parity bits than single-error-correcting Hamming codes. Yet our UL-ELCs are more powerful than basic single-error-detecting parity: they localize single-bit errors to a specific chunk of a codeword. SDELC then heuristically recovers from these localized errors using a small embedded C library that exploits observable side information (SI) about the application’s memory contents. SI can be in the form of redundant data (value locality), legal/illegal instructions, etc. Our combined FaultLink+SDELC approach improves min-VDD by up to 440 mV and correctly recovers from up to 90% (70%) of random single-bit soft faults in data (instructions) with just three parity bits per 32-bit word.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.