Abstract

In recent years, climate change and catchment degradation have negatively affected stage patterns in rivers which in turn have affected the availability of enough water for various ecosystems. To realize and quantify the effects of climate change and catchment degradation on rivers, water level monitoring is essential. Various effective infrastructures for river water level monitoring that have been developed and deployed in developing countries over the years, are often bulky, complex and expensive to build and maintain. Additionally, most are not equipped with communication hardware components which can enable wireless data transmission. This paper presents a river water level data acquisition system that improves on the effectiveness, size, deployment design and data transmission capabilities of systems being utilized. The main component of the system is a river water level sensor node. The node is based on the MultiTech mDot – an ARM-Mbed programmable, low power RF module – interfaced with an ultrasonic sensor for data acquisition. The data is transmitted via LoRaWAN and stored on servers. The quality of the stored raw data is controlled using various outlier detection and prediction machine learning models. Simplified firmware and easy to connect hardware make the sensor node design easy to develop. The developed sensor nodes were deployed along River Muringato in Nyeri, Kenya for a period of 18 months for continuous data collection. The results obtained showed that the developed system can practically and accurately obtain data that can be useful for analysis of river catchment areas.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.