Abstract

Microfluidic devices for dielectrophoretic cell separation are typically designed and constructed using microfabrication methods in a clean room, requiring time and expense. In this paper, we describe a novel alternative approach to microfluidic device manufacture, using chips cut from conductor-insulator laminates using a cutter plotter. This allows the manufacture of microchannel devices with micron-scale electrodes along every wall. Fabrication uses a conventional desktop cutter plotter, and requires no chemicals, masks or clean-room access; functional fluidic devices can be designed and constructed within a couple of hours at negligible cost. As an example, we demonstrate the construction of a continuous dielectrophoretic cell separator capable of enriching yeast cells to 80% purity at 10 000 cells/s.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.