Abstract

Compressional (P) wave and shear (S) wave seismic reflection techniques were used to delineate the sand and gravel aquifer within a highly saline clay‐filled paleochannel in the Eastern Goldfields of Western Australia. The seismic refraction and gravity methods were also used to investigate the paleochannel. The unsaturated loose fine‐grained sand up to 10 m in depth at the surface is a major factor in degrading subsurface imaging. The seismic processing needed to be precise, with accurate static corrections and normal moveout corrections. Deconvolution enhanced the aquifer and other paleochannel reflectors. P‐wave reflection and refraction layer depths had good correlation and showed a total of six boundaries: (1) water table, (2) change in velocity (compaction) in the paleochannel sediments, (3) sand and gravel aquifer, (4) red‐brown saprolite and green saprolite boundary, (5) weathered bedrock, and (6) unweathered bedrock. P‐wave explosive and hammer sources were found to have similar signal characteristics, and the aquifer and bedrock were both imaged using the hammer source. The deep shots below the water table have the most broadband frequency response for reflections, but stacking clear reflections was difficult. The S‐wave reflection results showed high lateral and vertical resolution of the basal saprolite clay, the sand and gravel aquifer, and very shallow clays above the aquifer. The S‐wave reflection stacking velocities were 10–20% of the P‐waves, increasing the resolution of the S‐wave section. The gravity data were modelled to fit the known drilling and P‐wave seismic reflection depths. The refraction results did not identify the top of bedrock, so refraction depths were not used for the gravity modeling in this highly weathered environment. The final gravity model mapped the bedrock topography beyond the lateral extent of the seismic and drilling data.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.