Abstract

Water scarcity in developing countries has forced farmers to use sewage as an alternative source of irrigation water. However, the usage of sewage for vegetable production has been known to cause excessive and often-unbalanced addition of nutrients hence posing a threat to food safety. The objective of this study was to determine the efficacy of slow sand filter and wetland plant in domestic wastewater treatment. To achieve this objective, samples were collected from the domestic wastewater collection pond within Jomo Kenyatta University of Agriculture and Technology (JKUAT). Laboratory tests were conducted on the collected samples and they revealed the presence of BOD, DO, pH, TDS, Sulfates, Chloride, Turbidity, Salinity, Conductivity, Alkalinity and Coliform; whose values varied when compared with that of the parameters for standard irrigation water. This gave insight to the kind of treatments and filtration medium that were required to transform domestic wastewater into water fit for irrigation. A slow sand filter bed was designed and constructed using precisely six samples materials; sand, sand and wetland plants, gravel, gravel and wetland plants, mixture of gravel and sand, mixture of gravel and sand with wetland plants. These materials were used to identify the chemical and biological changes in domestic wastewater within a seven-day period. The water collected from the slow sand filter was tested, results showed that, of all six samples, slow sand filter using the mixture of gravel, sand with wetland plants had an average percentage efficient of 90% in removing all impurities from domestic wastewater thereby turning it into water suitable for irrigation. It is hoped that this study will provide a safe, easy, eco-friendly and cheap method of wastewater treatment while ensuring the sustainability of wastewater for irrigation and the expansion of green spaces in urban and peri-urban areas.

Highlights

  • The objective of this study was to determine the efficacy of slow sand filter and wetland plant in domestic wastewater treatment

  • Laboratory tests were conducted on the collected samples and they revealed the presence of BOD, DO, pH, TDS, Sulfates, Chloride, Turbidity, Salinity, Conductivity, Alkalinity and Coliform; whose values varied when compared with that of the parameters for standard irrigation water

  • The water collected from the slow sand filter was tested, results showed that, of all six samples, slow sand filter using the mixture of gravel, sand with wetland plants had an average percentage efficient of 90% in removing all impurities from domestic wastewater thereby turning it into water suitable for irrigation

Read more

Summary

Background of the Study

Wastewater according to Tchobanoglous and Burton (1995) is the combination of liquid waste or water-carried waste from households, institutions, commercial and industrial establishments, as well as groundwater, surface water and storm water. Domestic wastewater comprises 50% - 80% of residential wastewater These come from households and assimilated persons such as hotels and business centers. They are a mixture of sewage and domestic wastewater. These waters represent at least 2/3 of the daily water consumption of each inhabitant, hostels and business centers. The majority of these wastewaters are managed by autonomous sanitation or discharged into the open-air canals. Water stress in arid and semi-arid countries has encouraged farmers to use sewage as a source of irrigation These types of practices are not without consequences on the environment and public health. Several possible reuses of water schemes such as distillation and membrane techniques for complete reuse and biological oxidation, filtration and disinfection schemes for partial reuse have been considered [2]

Statement of the Problem
Objective of Study
Scope of Study
Characteristics of Domestic Wastewater
Standard Characteristics for Irrigation Water
Laboratory Filter Dimensions
Natural River Sand
Natural Coarse Aggregates
Experimental Program
Aggregate Characterization
Slow Sand Filter and Experimental Method
Sample Preparation and Laboratory Testing
Physical Parameters
Quality of Grey Water
Performance of Filter
Conclusion
Recommendations
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call