Abstract
Here, we report on the inexpensive fabrication of an electrospray/electrospinning setup by fused deposition modelling (FDM) 3D printing and provide the files and parameters needed to print this versatile device. Both electrospray and electrospinning technologies are widely used for pharmaceutical, healthcare and bioengineering applications. The setup was designed to be modular, thus its parts can be exchanged easily. The design provides a safe setup, ensuring that the users are not exposed to the high voltage parts of the setup. PLA, PVA, and a thermoplastic elastomer filament were used for the 3D printing. The filament cost was $100 USD and the rig was printed in 6 days. An Ultimaker 3 FDM 3D printer was used with dual print heads, and the PVA was used as a water-soluble support structure. The end part of the setup had several gas channels, allowing a uniform gas flowing against the direction of the nanoparticles/nanofibers, enhancing the drying process by enhancing the evaporation rate. The setup was tested in both electrospray and electrospinning modes successfully. Both the .sldprt and .stl files are provided for free download.
Highlights
Nanotechnology has emerged as a state-of-the-art tool for biomedical applications and has attracted biotechnology, pharmaceutical, and healthcare industries during recent decades [1]
This paper describes the Three dimensional (3D) printing process of a safe, modular electrospray/electrospinning setup
All the larger parts were printed with a sheet of paper attached to the open front part of the Ultimaker 3 printer, in order to reduce the temperature fluctuations during the 3D printing process
Summary
Nanotechnology has emerged as a state-of-the-art tool for biomedical applications and has attracted biotechnology, pharmaceutical, and healthcare industries during recent decades [1]. Electrospinning is a widely used method for pharmaceutical, medicinal or biological applications [9,10,11,12] as it can process solutions, melts, or even suspensions into long nano/micro-fibers [13]. The setup is made of 4 main parts (Fig. 1): (i) a syringe, which is placed inside a syringe pump for continuous solution flow; (ii) a metallic nozzle; (iii) a high voltage power supply (which is connected to the nozzle); (iv) and a collector (which is conductive to attract the charged nanoparticles/nanofibers, and is placed opposite to the high voltage electrode) [3, 22].
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.