Abstract

Trimetallic nanoparticles of non-noble Cu–Fe–Co with different molar ratios were successfully immobilized in the metal-organic frameworks (MIL-101) via an easy impregnation–reduction process. XRD, TEM, XPS, ICP-MS and BET methods were used to characterize the catalyst. Comparing to their bimetallic counterparts, Cu6Fe0.8Co3.2@MIL-101 demonstrates the best catalytic performance for dehydrogenation of ammonia borane by hydrolysis at 298 K Cu6Fe0.8Co3.2@MIL-101 shows a total turnover frequency (TOF) value of 23.2 molH2 molcatalyst−1 min−1 and an activation energy value of 37.1 kJ mol−1. The enhancement of catalytic activity was attributed to a synergistic effect among copper, cobalt and iron nanoparticles supported on MIL-101. In addition, the catalyst still exhibits good stability and magnetic recyclability after seven cycles. The low-cost catalyst has good prospect for application in the field of hydrogen storage.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call