Abstract

Achieving higher photovoltaic efficiency in single-junction devices is becoming increasingly difficult, but tandem modules offer the possibility of significant efficiency improvements. Device modeling shows that four-terminal CdTe/Si tandem solar modules offer the prospect of 25%–30% module efficiency, and technoeconomic analysis predicts that these efficiency gains can be realized at costs per Watt that are competitive with CdTe and Si single junction alternatives. The cost per Watt of the modeled tandems is lower than crystalline silicon, but slightly higher than CdTe alone. However, these higher power modules reduce area-related balance of system costs, providing increased value especially in area-constrained applications. This avenue for high-efficiency photovoltaics enables improved performance on a near-term timeframe, as well as a path to further reduced levelized cost of electricity as module and cell processes continue to advance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.