Abstract

Local strained-silicon channel pMOSFETs with minimum gate length down to 22 nm have been fabricated by integrating Ge preamorphization implantation (PAI) for source/drain (S/D) extension, which induces a uniaxial compressive stress in the channel to attain an enhanced pMOSFET performance without additional masks. A 43 % improvement of hole effective mobility has been obtained for 35-nm gate length pMOSFETs with an optimized Ge PAI condition for S/D extension at 1.1-MV cm vertical effective field, and the hole mobility improvement is nearly maintained at higher vertical field. The corresponding enhancement of a saturated drive current is 25 % at 1.3-MV ldr cm vertical field. The scaling strengthens the enhancement of the hole mobility remarkably. No negative effect on electron effective mobility is observed. An analysis by using a zero-order Laue zone diffraction on large angle convergent beam electron diffraction patterns in a transmission electron microscopy confirms that the significant residual compressive strain up to -3.0 % in the channel region is induced for 60-nm gate length strained channel pMOSFETs with the same optimized Ge PAI condition as that of 35-nm gate length pMOSFETs. The depth profiles of the residual compressive strain and shear strain in the channel region are given, respectively. The possible mechanisms are discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call