Abstract
This study proposes a design for unmanned chemical factories and implementation based on ultra-low-cost Internet of Things technology, to combat the impact of COVID-19 on industrial factories. A safety and private blockchain network architecture was established, including a three-layer network structure comprising edge, fog, and cloud calculators. Edge computing uses a programmable logic controller and a single-chip microcomputer to transmit and control the motion path of a four-axis robotic arm motor. The fog computing architecture is implemented using Python software. The structure is integrated and applied using a convolutional neural network (CNN) and a fractional-order proportional-integral-derivative controller (FOPID). In addition, edge computing and fog computing signals are transmitted through the blockchain, and can be directly uploaded to the cloud computing controller for signal integration. The integrated application of the production line sensor and image recognition based on the network layer was addressed. We verified the image recognition of the CNN and the robot motor signal control of the FOPID. This study proposes that a CNN + FOPID method can improve the efficiency of the factory by more than 50% compared with traditional manual operators. The low-cost, high-efficiency equipment of the new method has substantial contribution and application potential.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.